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Summary 
 
This report is a documentation of the results on flowfield surveys for the GE/ARL mixer-ejector 
nozzle carried out in an open jet facility at NASA Glenn Research Center. The results reported 
are for cold (unheated) flow without any surrounding co-flowing stream. Distributions of 
streamwise vorticity as well as turbulent stresses, obtained by hot -wire anemometry, are 
presented for a low subsonic condition. Pitot probe survey results are presented for nozzle 
pressure ratios up to 3.5. Flowfields both inside and outside of the ejector are considered. Inside 
the ejector, the mean velocity distribution exhibits a cellular pattern on the cross sectional plane, 
originating from the flow through the primary and secondary chutes. With increasing downstream 
distance an interchange of low velocity regions with adjacent high velocity regions takes place 
due to the action of the streamwise vortices. At the ejector exit, the velocity distribution is 
nonuniform at low and high pressure ratios but reasonably uniform at intermediate pressure 
ratios. The effects of two chevron configurations and a tab configuration on the evolution of the 
downstream jet are also studied. Compared to the baseline case, minor but noticeable effects are 
observed on the flowfield.  
 
 

Introduction 
 
In order to achieve jet noise reduction goals for the High Speed Civil Transport (HSCT) aircraft, 
currently under development, various designs of a mixer-ejector nozzle have been under 
consideration. Its basic feature includes a two dimensional primary nozzle with multiple chutes 
which is surrounded by an ejector of rectangular cross section. An earlier model of the nozzle was 
tested extensively in the Aerodynamic Research Laboratory (ARL) of General Electric Aircraft 
Engines Company in Cincinnati. Laser doppler velocimeter data for the flowfield and data for the 
radiated noise field were obtained; these results were summarized in an earlier report (Majjigi, 
R.K., Brausch, J.F., Askew, J.W., Shin, H., Mengle, V., and Balan, C., “Low Noise Exhaust 
Nozzle Technology Development”, Report on Grant NAS3–25415, April, 1996, not published). 
While the noise reduction goal continues to be pursued through testing with later generations of 
the nozzle, the earlier model was brought to Glenn to carry out relatively fundamental measure-
ments in an effort to further understand the flow mechanisms. The immediate goal in the Glenn 
study has been to obtain complementary, further details of the flowfield with and without noise 
suppression devices such as chevrons and tabs. The overall goal has been to look for clues that 
could lead to improved mixing within the ejector and further spreading of the jet downstream 
which are thought to hold keys for the desired noise suppression. So far measurements have been 
conducted with a fixed geometry of the chutes and the ejector, with and without the chevrons and 
tabs, and the purpose of this report is to document those results. 
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The specific objectives in the measurements were as follows. (A) For the baseline configuration 
perform hot-wire surveys for an incompressible flow case inside and outside of the ejector (mean 
velocity, vorticity and turbulent stresses.). (B) For the baseline configuration perform Pitot probe 
surveys at various nozzle pressure ratios inside and outside of the ejector (flow uniformity, 
pumping, jet spreading, etc.). (C) Study effects of “chevrons” and “tabs” on the downstream 
evolution of the jet.  
 
The main results are presented with composite plots and perspective views of the velocity and 
vorticity distributions, in figures V.1 to V.15, without any details of the quantitative information. 
A discussion of each of these figures is listed in the Results section. Details of the data are 
included in the appendix as contour plots. With the help of the nomenclature section and the 
annotations on the margin of the appendix figures one should be able to obtain all pertinent 
details. For cross reference, the corresponding appendix figure numbers are listed in parentheses 
on each of figures V.1 to V.15.  
 
 

Nomenclature 
 

D  Equivalent diameter of ejector exit (4.07 in.) 
&m  Mass flow rate ( Im&  from flow meter, other data from Pitot probe survey)  

M  Mach number  

NPR  Nozzle pressure ratio, P0/PA 

P  Static pressure 

PT  Total pressure 

u,v,w  Streamwise and transverse velocity components (upper case for mean values) 

x,y,z  Coordinates with origin at ejector exit center (z along long axis of the ejector  
cross section) 

ωx  Streamwise vorticity (∂V/∂z – ∂W/∂y) 
 
Subscripts 

A  Ambient conditions  

I  Conditions at primary nozzle exit  

J  Conditions at ejector exit  

0  Plenum chamber conditions  

MAX  Maximum value at a given x 

 



NASA/TM—2004-213113 3 

Measurement Conditions and Procedure 
 
The measurements were conducted for the nozzle configuration with suppressor area ratio (SAR) 
of 2.8 and mixing area ratio (MAR) of 1.0. The “long ejector” was used together with the “flush 
inlet.” MAR = 1 implied that the cross sectional area of the ejector (5.005 in. × 2.600 in.) was 
constant throughout its length. The long ejector had a length of 9.705 in. downstream of the 
primary nozzle exit. SAR denoted the ratio of the ejector area to the primary nozzle exit area 
which was 4.649 in.2. The hot-wire data were obtained at NPR = 1.07 (P0 = 1 psig, MI = 0.32). 
The Pitot probe data were obtained covering an NPR range of 1 to 3.5. The effect of chevrons and 
tabs were studied mostly at NPR = 2.5. Standard measurement techniques were employed with 
computer controlled probe traversing and data acquisition. For details of the Pitot probe measure-
ments reference 1 may be consulted, while details of the hot-wire measurements are discussed in 
reference 2. 
 
The Mach number values in appendix figures B1 to B22 are approximate especially far inside the 
ejector. Only total pressure was measured and the Mach number was calculated assuming static 
pressure to be equal to that outside in the ambient. Furthermore, Pitot probe errors were large  
just downstream of the primary nozzle due to flow angularity. The errors were also large on the 
periphery of the downstream jet (figs. C1 to C16) where the velocity was small and dominated  
by the entrainment component. (No significance should be attached to the small “negative” Mach 
numbers in those regions which, for ease of analysis, were calculated simply by using the 
absolute values of the measured negative total pressures.) The hot-wire measurements similarly 
had errors in the same regions due to flow angularity. Further discussion of the errors can be 
found in references 1 and 2. 
 
Figure P.1 shows an end view of the nozzle mounted in the jet facility. The lower half of the 
primary nozzle chutes can be seen. The upper and lower chutes were aligned. Figure P.2 shows  
a close up view of the nozzle mounted in the jet facility. Here, the ejector end is fitted with the 
large chevrons. Figure P.3 shows another view of the facility where the ejector end is fitted with 
the tabs. A three element Pitot probe rake mounted on the probe traversing unit can be seen in the 
foreground. (Chevrons and tabs are described further with figures V.11(A) and (B).) Figure P.4, 
reproduced from reference 3, shows schematic views of the nozzle and the chutes.  
 
 

Results 
 
Figure V.1.—Longitudinal mean velocity distributions at five x-locations inside the ejector;  

MI = 0.32. The box outlines the ejector, with the primary nozzle exit located on the left end.  
 
Figure V.2.—Streamwise vorticity distribution within the ejector shown by two iso-surfaces. The 

data are based on measurements at the five stations of figure V.1. The outer vortex strands 
appear broken because measurement range was smaller farther inside. 

 
Figure V.3.—Sense of the streamwise vortex pairs originating from the chutes, as inferred from 

the ωx data.  
 
Figure V.4.—The data of figure V.1 shown as contour plots at four stations. The switchover of 

the high-low-high velocity regions to low-high-low velocity regions from x/D = –2 to  
x/D = –1 is clearly shown. This occurs because the streamwise vortex pairs continually 
transport fluid in the lateral direction. 
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Figure V.5.—Downstream evolution of the jet shown by data at x/D = 0, 1, 2, 4, and 8; MI = 0.32. 
 
Figure V.6.—Streamwise vorticity distribution corresponding to the measurement range of  

figure V.5. Note that the iso-surface levels are ten times lower than those in figure V.2. 
 
Figure V.7.—Mach number distributions within the ejector obtained from Pitot probe surveys. 

(A), (B) and (C) are for indicated values of NPR and MI. Note that the distribution at the exit 
plane is nonuniform and similar at MI = 0.34 and 1.21 but more uniform at MI = 0.70.  

 
Figure V.8.—The switchover of the high and low velocity regions, as in figure V.4, is shown by 

total pressure variations measured downstream of a primary and an adjacent secondary chute. 
Data are shown for 11 values of NPR in (a) and (b). The pair of traces for each NPR are 
normalized by PT_O which is the measured total pressure at x = –9.5 in., y = 0.8 in., z = 0. 
Successive pairs are staggered by one major ordinate division. Switchover occurs at all values 
of NPR, more than once in certain cases. No systematic trend in the first switchover location 
can be discerned.  

 
Figure V.9.—Mach number distributions at the exit plane of the ejector obtained from Pitot probe 

surveys. The cellular patterns occur at low and high values of NPR, but the flow is more 
uniform at NPR = 1.36 (MI = 0.68). 

 
Figure V.10.—Ratio of mass flow rate at ejector exit, obtained by integration of data as in figure 

V.9, to the mass flow rate through primary nozzle measured by a flow meter. 
 
Figure V.11.—Sketch of the chevrons and tabs. The large chevrons in (a) are approximately 

similar in geometry as used with a larger model of the nozzle in Cell 41 of GEAE, Cincinnati. 
Chevrons are mounted on the ejector outer surface (see fig. P.2). They are bent by about 10º 
so that the surface exposed to the flow is parallel to the streamwise direction. Tabs are of 
same size as the small chevrons. Ten tabs are used (see fig. P.3), each located downstream of 
the secondary flow chutes. This configuration was chosen, on the basis of the measured 
streamwise vorticity distribution (fig. V.3), in order to augment the strength of the vortices. 

 
Figure V.12.—Downstream evolution of the jet based on Pitot probe surveys at MI � 1.23  

(NPR � 2.5) for the chevron and the tab cases. No dramatic difference in jet spreading is 
observed. However, noticeable changes in the jet cross sectional shape can be observed upon 
close inspection. 

 
Figure V.13.—Maximum Mach number and mass flow rate variation with streamwise distance, 

obtained from data of figure V.12. The solid symbols are for a free rectangular jet with aspect 
ratio of 3:1 (ref. 2). Note that the comparison of the free rectangular jet data in figure V.13(b) 
should be interpreted with caution, as D is equivalent diameter of the nozzle in that case but it 
is equivalent diameter of the ejector in the present case. 

 
Figure V.14.—Jet cross sectional shape at x/D = 4, at NPR = 2.5 and 3.5, for: (a) baseline, (b) tab, 

and (c) large chevron cases. Flutter at NPR = 3.5 did not allow measurement for the small 
chevron case. For the large chevron case in (c) at NPR = 3.5, probe broke off after half the 
field was surveyed; the full distribution is shown by assuming symmetry about y = 0 plane. 

 
Figure V.15.—Flow unsteadiness and flutter of chevrons at NPR = 3.5 are shown by these noise 

spectra data measured by a microphone. With the chevrons (large and small) a rather violent 
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unsteadiness ensued when NPR was increased to about 3.5. It did not occur for the baseline 
and the tab cases. The frequency was about 400 Hz but changed for various set ups. After a 
sustained run, the chevrons would develop cracks (some actually fractured away) at the base 
along the lip of the ejector. It appeared that the unsteadiness was due to structural resonance 
(flutter) of the chevron pieces attached to the long edges of the ejector (fig. V.11(a)), 
probably instigated by unsteady shock motion. 
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Figure P.1.—End view of the nozzle mounted in the jet facility. The lower half of the primary nozzle 
   chutes can be seen. 
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Figure P.2 .—Close up view of the nozzle mounted in the jet facility. Here, the ejector end is fitted with the 
   large chevrons.
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Figure P.3.—Another view of the facility where the ejector end is fitted with the tabs. A three element Pitot 
   probe rake mounted on the probe traversing unit can be seen in the foreground. 
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Figure P.4.—Schematic views of the nozzle and the chutes (from reference 3).
   (a) Schematic of nozzle. (b) Perspective view of chutes.

(a)

(b)
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Figure V.1.—Mean velocity inside injector; x/D = –2, –1.5, –1, –0.5 and 0 (appendix figs. A1–A4). 

Figure V.2.—Streamwise vorticity inside injector, ωxD/UJ = ±0.8 iso-surfaces (appendix figs. A5–A8).
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Figure V.3.—Schematic of streamwise vorticity from the chutes.

Figure V.4.—Mean velocity inside ejector. Switching of high and low velocity regions 
   (appendix figs. A1–A4, turbulent stresses in figs. A9–A28).
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Figure V.5.—Mean velocity downstream of ejector. Blue iso-surface: U/UJ = 0.15 (appendix figs. A29–A32).
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Figure V.6.—Streamwise vorticity downstream of ejector, ωxD/UJ = ±0.08 iso-surfaces (appendix figs. A33–A36, 
   turbulent stresses in figs. A37–A56).



NASA/TM—2004-213113 14

Figure V.7.—Mach number, M/MMAX. (a) NPR = 1.08 (MI = 0.34) (appendix figs. B1–B4). (b) NPR = 1.39 
   (MI = 0.70) (appendix figs. B5–B8). (c) NPR = 2.46 (MI = 1.21) (appendix figs. B9–B12).

(a)

(b)
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Figure V.7.—Concluded. (c) NPR = 2.46 (MI = 1.21) (appendix figs. B9–B12).

(c)
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(a)

(b)

Figure V.8.—Total pressure variation inside ejector, y/D = 0.2. (a) Lower NPR. (b) Higher NPR.
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Figure V.9.—Mach number distribution at ejector exit, x/D = 0 (appendix figs. B13–B22).
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Figure V.10.—Ratio of mass flux at ejector exit and mass flux through 
   primary nozzle (appendix figs. B13–B22).

Figure V.11.—(a) Large and small chevrons. (b) Tabs are bent 35° into the flow.
   Area blockage is approximately 0.3% per tab.

(a)

(b)
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Figure V.12.—Mach number distribution, NPR = 2.5 (MI = 1.23) (appendix figs. C1–C16).
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(a)

(b)

Figure V.13.—Streamwise variations of peak Mach number and mass  
   flux, NPR = 2.5 (MI = 1.23). (a) Peak Mach number. (b) Mass flux.
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Figure V.14.—Mach number distribution, x/D = 4. (a) Baseline. (b) Tabs. (c) Large chevrons.

(a)

(b)

(c)
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Figure V.15.—Sound pressure level spectra for the large chevron  
   case.
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Appendix 
 
The data are presented as contour plots on the cross sectional (y, z) plane for a given x/D location 
indicated in the margin. Figures A1 to A56 show hot-wire data for the baseline nozzle (without 
tabs or chevrons). Figures B1 to B22 show Mach number contours inside and at the exit of the 
ejector, for various NPR. Figures C1 to C16 show Mach number contours for the baseline, 
chevron and tab cases in the downstream jet at NPR ≈ 2.5. Figures D1 to D14 show hot-wire 
data for the chevron and tab cases. Other notations used in the margin are 
 
Min Minimum value in the field 

Max Maximum value in the field 

c_mn Minimum contour level 

c_mx Maximum contour level 

incr Contour interval 

Omega_x ωx 

uv/Uj**2 2
jU/uv  

uw/Uj**2 2
jU/uw  

mi mI, lbs/sec 

Dy, Dz Half velocity diameters 
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